Reversible stepwise mechanism involving a carbanion intermediate in the elimination of ammonia from L-histidine catalyzed by histidine ammonia-lyase.

نویسندگان

  • T Furuta
  • H Takahashi
  • H Shibasaki
  • Y Kasuya
چکیده

L-Histidine labeled with deuterium at the C-5' position of the imidazole ring, L-[5'-2H]histidine (His-5'-D), was used as a probe for investigating a stepwise reversible mechanism via a carbanion intermediate in the elimination of ammonia catalyzed by histidine ammonia-lyase (EC 4.3.1.3). The labeled L-histidine (His-5'-D) (2.45 mM) was incubated with histidine ammonia-lyase (200 units) from Pseudomonas fluorescens at pH 7.0 or 9.0 at 25.0 degrees C for 24 h. The time course of the reaction was examined to determine the rates of enzyme-catalyzed hydrogen exchange at C-5' of L-histidine and urocanic acid. The finding of the enzyme-catalyzed hydrogen exchange at C-5' of both L-histidine and urocanic acid in the presence of L-histidine provided a rational explanation for a stepwise reversible mechanism via a carbanion intermediate in the elimination reaction. The rate of increase in the concentration of urocanic acid exchanged with hydrogen (UA-5'-H) did not depend on the formation rate of urocanic acid and UA-5'-H was continuously formed at a constant rate (25.6 microM/h) even after the completion of urocanic acid formation. These observations suggested the presence of the reversible reaction of urocanic acid and a carbanion intermediate. Since there was only a minor contribution for the formation of UA-5'-H from L-histidine exchanged with solvent hydrogen (His-5'-H), the main pathway in the enzymatic reaction of His-5'-D must be the formation of UA-5'-D via a carbanion intermediate (carbanion-D). Regeneration of the carbanion-D from UA-5'-D by its reverse reaction and subsequent hydrogen incorporation at C-5' would contribute to a large extent for the formation of UA-5'-H. The stability of carbanion was also demonstrated to be approximately three times higher at pH 7.0 than at pH 9.0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into enzyme evolution revealed by the structure of methylaspartate ammonia lyase.

Methylaspartate ammonia lyase (MAL) catalyzes the magnesium-dependent reversible alpha,beta-elimination of ammonia from L-threo-(2S,3S)-3-methylaspartic acid to mesaconic acid. The 1.3 A MAD crystal structure of the dimeric Citrobacter amalonaticus MAL shows that each subunit comprises two domains, one of which adopts the classical TIM barrel fold, with the active site at the C-terminal end of ...

متن کامل

N-formimino-L-glutamate formiminohydrolase of Aerobacter aerogenes.

N-Formimino-n-glutamate is an intermediate in the degradation of n-histidine by such different types of cells as those of animal liver (1)) Pseudomonas jluorescens (2, 3), and Aerobacter aerogenes (3). The pathway leading from histidine to formiminoglutamate is the same in all cases and comprises three steps catalyzed by distinct enzymes: L-histidine is converted to urocanate and ammonia by his...

متن کامل

Induction of histidine-degrading enzymes in Pseudomonas aeruginosa.

Urocanate but not histidine was able to induce formation of histidine-degrading enzymes in a histidine ammonia-lyase-deficient mutant of Pseudomonas aeruginosa. The results, in conjunction with others reported previously, indicate that urocanate, the first intermediate, is the physiological inducer of the pathway.

متن کامل

Induction of histidine-degrading enzymes in protein-starved rats.

Inbred weanling rats were maintained on diets containing low (6%), medium (lS%), and high (40%) levels of proteins. After 45 days they were killed and the activities of histidine ammonia lyase, urocanase, and histidine pyruvate aminotransferase in liver were assayed. Histidine ammonia lyase increased with age of the rat, and the increase was proportional to the level of protein in the diet. Ani...

متن کامل

The roles of active site residues in the catalytic mechanism of methylaspartate ammonia-lyase☆

Methylaspartate ammonia-lyase (MAL; EC 4.3.1.2) catalyzes the reversible addition of ammonia to mesaconate to yield l-threo-(2S,3S)-3-methylaspartate and l-erythro-(2S,3R)-3-methylaspartate as products. In the proposed minimal mechanism for MAL of Clostridium tetanomorphum, Lys-331 acts as the (S)-specific base catalyst and abstracts the 3S-proton from l-threo-3-methylaspartate, resulting in an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 267 18  شماره 

صفحات  -

تاریخ انتشار 1992